Introduction to Structural Equation Modeling

A 2-Day Seminar Taught by Paul Allison, Ph.D.

Read reviews of this course


Structural Equation Modeling (SEM) is a statistical methodology that is widely used by researchers in the social, behavioral and educational sciences.  First introduced in the 1970s, SEM was a marriage of psychometrics and econometrics. On the psychometric side, SEM allows for latent variables with multiple indicators. On the econometric side, SEM allows for multiple equations, possibly with feedback loops. In today’s SEM software, the models are so general that they encompass most of the statistical methods that are currently used in the social and behavioral sciences.

Here Are a Few Things You Can Do With Structural Equation Modeling

• Test complex causal theories with multiple pathways.
• Estimate simultaneous equations with reciprocal effects.
• Incorporate latent variables with multiple indicators.
• Investigate mediation and moderation in a systematic way.
• Handle missing data by maximum likelihood (better than
multiple imputation).
• Analyze longitudinal data.
• Estimate fixed and random effects models in a comprehensive framework.
• Adjust for measurement error in predictor variables.

Because SEM is such a complex and wide-ranging methodology, learning how to use it can take a substantial investment of time and effort. Now, you have a the opportunity to learn the basics of SEM from a master teacher, Professor Paul D. Allison, in just two days.


Computing

The empirical examples and exercises in this course will emphasize Mplus, but equivalent code will be demonstrated for SAS, Stata and lavaan (a new package for R). Mplus is one of the best SEM packages because of its superior capabilities for missing data, multi-level modeling, and ordinal and categorical data. Although not required, you are encouraged to bring your own laptop (loaded with SAS, Stata, Mplus or the Mplus demo) and do the optional exercises.


WHO SHOULD ATTEND?

This course is designed for researchers with a moderate statistical background who want to apply SEM methods in their own research projects. No previous background in SEM is necessary. But participants should have a good working knowledge of basic principles of statistical inference (e.g., standard errors, hypothesis tests, confidence intervals), and should also have a good understanding of the basic theory and practice of linear regression. 


Location and Materials

The course meets 9 a.m. to 4 p.m. on Friday, October 17 and Saturday, October 18 at Manhattan Beach Marriott, 1400 Parkview Ave, Manhattan Beach, CA 90266.

Participants receive a bound manual containing detailed lecture notes (with equations and graphics), examples of computer printout, and many other useful features. This book frees participants from the distracting task of note taking.


REGISTRATION AND LODGING

The fee of $895.00 includes all seminar materials. 

Lodging Reservation Instructions

A block of guest rooms has been reserved at Manhattan Beach Marriott, located at 1400 Parkview Avenue, Manhattan Beach, CA  90266 at a special rate of $169 per night for a Standard room. In order to make a reservation, use this link or call Marriott Reservations at 1 (800) 228-9290 or (310) 546-7511 and identify yourself as part of the the Statistical Horizons, LLC Seminar group. For guaranteed rate and availability, you must reserve your room no later than September 25, 2014.


Seminar outline

1. Introduction to SEM
2. Path analysis
3. Direct and indirect effects
4. Identification problem in nonrecursive models
5. Reliability and validity
6. Multiple indicators of latent variables
7. Exploratory factor analysis
8. Confirmatory factor analysis
9. Goodness of fit measures
10. Structural relations among latent variables
11. Alternative estimation methods.
12. Multiple group analysis
13. Models for ordinal and nominal data


RECENT COMMENTS FROM PARTICIPANTS

 “Excellent teacher who really cares for the participants and a great teacher who helped me in thinking about the different application of the topic in my research area of interest.”
  Pradeep Podila, University of Memphis

“Excellent course, easy to follow and leaves participants with applicable skills.”
  Julia Felton, University of Maryland 

“This course offers a wide body of knowledge on SEM that, in my opinion, has the right balance of review material and new material. More specifically, the demonstration of the concepts in multiple statistical package is a great plus, as it allows for both comparing similarities & differences as well as learning new features. I also liked Dr. Allison’s interaction with students & his subtle but much needed sense of humor, when dealing with a complex course such as this. ”
  Monika Marko-Holguin, University of Illinois

“This course provided a great introduction to SEM. As a novice with the method, the lectures were informative in establishing fundamental knowledge. I would recommend this course to others who don’t know where to start with SEM.” 
  Andrea Cohee, Indiana University

“An entire day of statistics seems overwhelming but the way it was divided with breaks every hours really worked to maximize learning. Thank you!”
  Maridekys Detres, Health Start Coalition of Pinellas

“This course provides a nice overview of SEM, and Dr. Allison makes everything easy to understand.”
  Hyojung Park, Manship School of Mass Communication-LSU 

“I had already taken a SEM course in my graduate program, but haven’t used it in several years. This course has a perfect refresher and added new insights as well. I am confident in my ability to begin using SEM in my every day work.”
  Robert Lucio, Saint Leo University 

“Surprisingly, the course better helped me understand unobserved heterogeneity, which is a real help in economics.”
  Diane Hite, Auburn Univeristy